位置:成果数据库 > 期刊 > 期刊详情页
Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes
  • 分类:O241.82[理学—计算数学;理学—数学] TM31[电气工程—电机]
  • 作者机构:[1]Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China, [2]Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China, [3]School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
  • 相关基金:Supports from the "thousands talents" program for the pioneer researcher and his innovation team, China, the Beijing Municipal Science & Technology Commission (Nos. Z131100006013004 and Z131100006013005), and National Natural Science Foundation of China (No. 61405131) are appreciated.
中文摘要:

摩擦电 nanogenerator (TENG ) 作为收获技术的一个新、有效的机械精力出现了。在这个工作,为有栅栏结构的旋转滑动的磁盘 TENG 的一个理论模型被构造,包括 dielectric-to-dielectric 和 conductor-to-dielectric 盒子。有限元素方法(女性) 被利用描绘在接触和非接触模式工作的 rotarysliding 磁盘 TENG 的基本物理。磁盘 TENG 的基本性质被发现被象 tribo 表面间距,栅栏数字,和几何尺寸那样的结构的参数控制。从女性的计算,一种近似 V-Q- 关系通过插值方法被造,然后有任意的负担抵抗的 TENG 动态产量特征是数字地计算的。最后,结构的参数和旋转上的力量和匹配的抵抗评估的输出的相关性被揭示。现在的工作提供旋转滑动的磁盘 TENG 的工作原则的深入的理解并且为在特定的应用程序优化 TENG 输出性能用作重要指导。

英文摘要:

The triboelectric nanogenerator (TENG) has emerged as a new and effective mechanical energy harvesting technology. In this work, a theoretical model for a rotary-sliding disk TENG with grating structure was constructed, including the dielectric-to-dielectric and conductor-to-dielectric cases. The finite element method (FEM) was utilized to characterize the fundamental physics of the rotary- sliding disk TENG working in both contact and non-contact modes. The basic properties of disk TENG were found to be controlled by the structural parameters such as tribo-surface spacing, grating number, and geometric size. From the FEM calculations, an approximate V-Q-a relationship was built through the inter- polation method, and then the TENG dynamic output characteristics with arbitrary load resistance were numerically calculated. Finall~ the dependencies of output power and matched resistance on the structural parameters and rotation rate were revealed. The present work provides an in-depth understanding of the working principle of the rotary-sliding disk TENG and serves as important guidance for optimizing TENG output performance in specific applications.

同期刊论文项目
同项目期刊论文