通道域效果晶体管(TFET ) 尽最大努力基于二维的材料正在答应竞争者到传统的金属氧化物半导体域效果晶体管,主要由于潜在的应用设备。这里,我们基于二种不同集成类型调查 TFET:在里面飞机和垂直 heterostructures 创作了二种有点(由 ab initio 量的 -P 和 -P) 搬运模拟。NDR 效果在在里面飞机和垂直 heterostructures 被观察了,并且当内在的区域长度在零附近时,效果与最高的 peak-to-valley 比率(PVR ) 变得重要。与在里面飞机 TFET 相比基于 -P 和 -P, 有 ~ 的更高的开/关水流比率的更好的性能 10 6 和 ~ 的一个更陡峭的次于最低限度的秋千(SS ) 23 mV/dec 在垂直 TFET 被完成。在 NDR 效果,开/关水流比率和 SS 的如此的差别在在里面飞机和垂直 heterostructures 被归因于 -P 和 -P 层的不同相互作用性质。
Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.