利用锥理论和Leggett-Williams不动点定理对偶数阶常微分方程组三点边值问题多个正解的存在性{u^(2m)(t)=(-1)^mf(t,v(t)),0≤t≤1,v^(2m)(t)=(-1)^mg(t,v(t)),0≤t≤1,u^(2i)(0)=u^(2i)(1)-αu^(2i)(ξ)=0,i=0,1…,m-1,v^(2i)(0)=v^(2i)(1)-βv^(2i)(η)=0,i=0,1…,m-1进行了讨论和证明,其中0〈ξ,η〈1,0〈α〈1/ξ,0〈β〈1/η且f,g∈C([0,1]×[0,+∞],[0,+∞]).
For the even-order ordinary differential systems {u^(2m)(t)=(-1)^mf(t,v(t)),0≤t≤1,v^(2m)(t)=(-1)^mg(t,v(t)),0≤t≤1,u^(2i)(0)=u^(2i)(1)-αu^(2i)(ξ)=0,i=0,1…,m-1,v^(2i)(0)=v^(2i)(1)-βv^(2i)(η)=0,i=0,1…,m-1 Where f, g : [ 0, 1 ] × [ 0, ∞ ) → [ 0, ∞ ) are continuous, growth conditions are imposed on f, g which yield the existence of at least three positive solutions by Leggitt - Williams fixed point theorem.