The cyclotron mass of magnetopolarons in wurtzite In x Ga 1 x N/GaN quantum well is studied in the presence of an external magnetic field by using the Larsen perturbation method.The effects of the built-in electric field and different phonon modes including interface,confined and half-space phonon modes are considered in our calculation.The results for a zinc-blende quantum well are also given for comparison.It is found that the main contribution to the transition energy comes from half-space and interface phonon modes when the well width is very small while the confined modes play a more important role in a wider well due to the location of the electron wave function.As the well width increases,the cyclotron mass of magnetopolarons first increases to a maximum and then decreases either with or without the built-in electric field in the wurtzite structure and the built-in electric field slightly reduces the cyclotron mass.The variation of cyclotron mass in a zinc-blende structure is similar to that in a wurtzite structure.With the increase of external magnetic field,the cyclotron mass of polarons almost linearly increases.The cyclotron frequency of magnetopolarons is also discussed.
The cyclotron mass of magnetopolarons in wurtzite InxGa1-xN/GaN quantum well is studied in the presence of an external magnetic field by using the Larsen perturbation method. The effects of the built-in electric field and different phonon modes including interface, confined and half-space phonon modes are considered in our calculation. The results for a zinc-blende quantum well are also given for comparison. It is found that the main contribution to the transition energy comes from half-space and interface phonon modes when the well width is very small while the confined modes play a more important role in a wider well due to the location of the electron wave function. As the well width increases, the cyclotron mass of magnetopolarons first increases to a maximum and then decreases either with or without the built-in electric field in the wurtzite structure and the built-in electric field slightly reduces the cyclotron mass. The variation of cyclotron mass in a zinc-blende structure is similar to that in a wurtzite structure. With the increase of external magnetic field, the cyclotron mass of polarons almost linearly increases. The cyclotron frequency of magnetopolarons is also discussed.