我们与来源和传送对流术语一起考虑变量的功能的分离到非线性的散开方程:u_t =((x) D (u) u_x )_x + B (x) Q (u) , A_x ≠ 0。到这个方程的变量的 Thefunctional 分离被使用组生叶 method.A 分类学习为承认函数的方程被执行可分离的解决方案。作为后果,产生方程的一些答案被获得。
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.