Finite Symmetry Transformation Groups and Some Exact Solutions to (2+1)-Dimensional Cubic Nonlinear SchrSdinger Equantion
- ISSN号:0253-6102
- 期刊名称:《理论物理通讯:英文版》
- 时间:0
- 分类:O151.2[理学—数学;理学—基础数学] V414[航空宇航科学与技术—航空宇航推进理论与工程;航空宇航科学技术]
- 作者机构:[1]Nonlinear Science Center, Ningbo University, Ningbo 315211, China, [2]Institute of Theoretical Computing, East China Normal University, Shanghai 200062, China, [3]Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences, Beijing 100080, China
- 相关基金:The project supported by K.C. Wong Magna Fund in Ningbo University, National Natural Science Foundation of China under Grant Nos. 10747141 and 10735030, Zhejiang Provincial Natural Science Foundations of China under Grant No. 605408, Ningbo Natural Science Foundation under Grant Nos. 2007A610049 and 2006A610093, and National Basic Research Program of China (973 Program 2007CB814800), Program for Changjiang Scholars and Innovative Research Team in University (IRTO734)
关键词:
立方非线性, 对称变换, 有限, 精确解, 符号计算, 线性独立, 直接法, 薛定谔, symmetry groups, cubic NLS equation, exact solution
中文摘要:
使用直接方法由 Lou 等求婚了。并且符号的计算,有限对称转变组为一(2+1 ) 维的立方的非线性的 Schrödinger (NLS ) 方程和它的相应圆柱的 NLS 方程被介绍。九个相关线性独立无穷小的发电机能被在无穷小的形式限制任意的常数从有限对称转变组获得。一些准确答案从一个简单旅行波浪答案被导出。
英文摘要:
Making use of the direct method proposed by Lou et al. and symbolic computation, finite symmetry transformation groups for a (2+ l)-dimensional cubic nonlinear Schrodinger (NLS) equation and its corresponding cylindrical NLS equations are presented. Nine related linear independent infinitesimal generators can be obtained from the finite symmetry transformation groups by restricting the arbitrary constants in infinitesimal forms. Some exact solutions are derived from a simple travelling wave solution.