Mobile social sensing network is one kind of emerging networks in which sensing tasks are performed by mobile users and sensing data are shared and collected by leveraging the intermittent inter-contacts among mobile users. Traditional ad hoc routing protocols are inapplicable or perform poorly for data collection or data sharing in such mobile social networks because nodes are seldom fully connected. In recent years, many routing protocols(especially social-based routing) are proposed to improve the delivery ratio in mobile social networks, but most of them do not consider the load of nodes thus may lead to unbalanced energy consumption among nodes. In this paper, we propose a simple Energy Efficient framework for Social-based Routing(EE-SR) in mobile social sensing networks to balance the load of nodes while maintaining the delivery ratio within an acceptable range by limiting the chances of forwarding in traditional social-based routing. Furthermore, we also propose an improved version of EE-SR to dynamically adjust the controlling parameter. Simulation results on real-life mobile traces demonstrate the efficiency of our proposed framework.
Mobile social sensing network is one kind of emerging networks in which sensing tasks are performed by mobile users and sensing data are shared and collected by leveraging the intermittent inter-contacts among mobile users. Traditional ad hoc routing protocols are inapplicable or perform poorly for data collection or data sharing in such mobile social networks because nodes are seldom fully connected. In recent years, many routing protocols (especially social-based routing) are proposed to improve the delivery ratio in mobile social networks, but most of them do not consider the load of nodes thus may lead to unbalanced energy consumption among nodes. In this paper, we propose a simple Energy Efficient framework for Social-based Routing (EE-SR) in mobile social sensing networks to balance the load of nodes while maintaining the delivery ratio within an acceptable range by limiting the chances of forwarding in traditional social-based routing. Furthermore, we also propose an improved version of EE-SR to dynamically adjust the controlling parameter. Simulation results on real-life mobile traces demonstrate the efficiency of our proposed framework.