本文研究了R上的一类离散交叉积的因子结构及其在小波分析中的应用问题.利用群测度构造离散交叉积的方法,我们构造了R上的一列离散交叉积,并且利用比率集的方法证明了上述交叉积是互相不同构的超有限III_γ型因子.上述结论推广了已有的一些结果.
In this article,we study the factor type of some discrete crossed products acting on R and its applications in wavelet analysis.By the group-measure method,we construct a sequence of discrete crossed products acting on R and prove that they are non-isomorphic hyperfiniteⅢ_λ factors by means of the ratio set.All the above generalize some known results.