位置:成果数据库 > 期刊 > 期刊详情页
面向离散优化问题的改进二元粒子群算法
  • ISSN号:1006-7043
  • 期刊名称:《哈尔滨工程大学学报》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(61272186,61100007); 黑龙江省自然科学基金资助项目(F200937,F201110); 黑龙江省博士后基金资助项目(LBH-Z12068); 中央高校基本科研业务费专项资金资助项目(HEUCF100608)
中文摘要:

二元粒子群算法被广泛用于求解离散组合优化问题。在求解离散优化问题时,二元粒子群算法会出现解空间利用率低,速度和状态趋同以及退化和波动等演化问题。针对这些问题,提出一种改进的二元粒子群算法。算法使用Gray码演化基编码,混沌初始化过程,改进速度和状态调整方法以及子代处理方法用于提高种群利用率和种群多样性。在不同类型的检验函数以及多选择背包问题上,和现有优化算法及其他二元粒子群算法相比,改进算法能够获得较高的收敛精度以及较快的收敛速度,体现出多离散优化问题的实际效用。

英文摘要:

Binary particle swarm optimization (BPSO) is wildly used to solve discrete combinational optimization problems. With the low amount of population size and limit iterations, BPSO would have the evolutional problems such as low utilization of solution space, convergence of the speed and status of particles, as well as the degradation and volatility during the iterations. To solve these problems, an improved binary PSO (IBPSO) is designed, which uses the Gray code evolution based coding, chaos initialization process of population, improved modification of the speed and status of particles and the off-spring processing to increase the diversity and utilization of the population. According to the experimental results on the test functions with different types and multiple choice knapsack problems, IBPSO outperforms the existing optimization algorithms and other binary algorithms with higher precision solution and faster convergence speed, which shows the practicality of multiple discrete optimization problems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工程大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工程大学
  • 主编:杨士莪
  • 地址:哈尔滨市南岗区南通大街145号1号楼
  • 邮编:150001
  • 邮箱:xuebao@hrbeu.edu.cn
  • 电话:0451-82519357
  • 国际标准刊号:ISSN:1006-7043
  • 国内统一刊号:ISSN:23-1390/U
  • 邮发代号:14-111
  • 获奖情况:
  • 工信部科技期刊评比"优秀期刊奖",中国高校科技期刊评比"精品期刊奖","北方十佳期刊奖",首届黑龙江省政府出版奖--优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11823