位置:成果数据库 > 期刊 > 期刊详情页
基于最速上升算法的超光谱图像波段选择搜索算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学电子与信息技术研究院,哈尔滨150001, [2]哈尔滨工业大学航天学院,哈尔滨150001
  • 相关基金:基金项目:国家自然科学基金资助项目(60872098)
中文摘要:

超光谱遥感数据具有的波段数目多、波段宽度窄、数据量庞大等特点,给图像的进一步解译带来困难。结合超光谱图像波段选择的具体应用,根据波段之间的相关性将整个波段划分为几个子波段,采用最速上升的特征选择搜索算法在各子波段中快速提取最优波段。为了验证本算法的有效性,分别选取JM距离、BH距离以及类内类间离散度作为评价准则,针对一幅200波段的AVIR IS超光谱图像进行分类实验,并将该方法与传统的SFFS算法进行对比。实验结果表明所采用的算法用于特征选择具有搜索能力强、分类精度高的特点,完全可以替代传统的SFFS算法。

英文摘要:

This paper proposed a band selection approach of hyperspectral image based on steepest-ascent search algorithm. The approach needed to divide the whole hyperspectral band into several subgroups in terms of the relativity between bands firstly, and then applied the steepest-ascent search strategy to quickly extracting optimal band in every subgroup in which the combinations of bands was indicated by binary vectors and the search was being along the steepest direction until the local extreme was acquired. In order to verify the ralidity of this algorithm, the approach was compared with the classical sequential forward floating selection suboptimal techniques, using hyperspectral remote sensing images as a data set. Experimental results prove the ralidity of this algorithms, which can be regarded as a valid alternative to classical SFFS method.

同期刊论文项目
期刊论文 15 会议论文 19 专利 5
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049