We investigate a measure of distinguishability defined by the quantum Chernoff bound, which naturally induces the quantum Chernoff metric over a manifold of quantum states. Based on a quantum statistical model, we alternatively derive this metric by means of perturbation expansion. Moreover, we show that the quantum Chernoff metric coincides with the infinitesimal form of the quantum Hellinger distance, and reduces to the variant version of the quantum Fisher information for the single-parameter case. We also give the exact form of the quantum Chernoff metric for a qubit system containing a single parameter.
We investigate a measure of distinguishability defined by the quantum Chernoff bound, which naturally induces the quantum Chernoff metric over a manifold of quantum states. Based on a quantum statistical model, we alternatively derive this metric by means of perturbation expansion. Moreover, we show that the quantum Chernoff metric coincides with the infinitesimal form of the quantum Hellinger distance, and reduces to the variant version of the quantum Fisher information for the single-parameter case. We also give the exact form of the quantum Chernoff metric for a qubit system containing a single parameter.