天然二苯乙烯低聚物是一类自然界分布广泛的多酚化合物,因其结构复杂且生物活性多样而受到密切关注,但此类化合物天然资源的稀少极大限制了其构效关系的调查及活性药物的筛选。近年来许多化学家对此类低聚物的仿生合成方法做了广泛而深入的研究,已形成一个新的研究热点。本文详尽综述了迄今三十多年来二苯乙烯类低聚物的仿生合成研究进展,包括在不同介质中的酶催化或金属氧化剂催化的氧化偶联方法、光催化的异构化及强酸催化下的环合反应,由不同的二苯乙烯前体通过仿生合成途径,构建出结构多样的二苯乙烯低聚物。此外,本文对该类低聚物的仿生合成研究前景做了展望。
Natural oligostilbenes are a class of plant polyphenols widely distributed in nature, and have received considerable attention in the chemical and biological fields because of their structural complexity as well as their diverse bioactivities. These oligomers and their derivatives are potentially useful leading compounds for drug development. Further investigations of structure-activity of oligostilbenes to screen active drugs were limited for their scarce availability in natural raw materials. Biosynthetic strategies towards these oligomers are studied widely and intensively by a number of chemists in recent years and has been a hot research topic. In this paper, the progress in the studies on the biomimetic synthesis of oligostilbenes over the past thirty years is reviewed in detail, including oxidative coupling reactions catalyzed by enzymes or metallic oxidants in various reaction mediums, isomerization under UV irradiation and cyclization induced by several strong acids. Diverse complex molecular architectures of oligostilbenes are thus constructed from a wide array of stilbene precursors through biomimetic routes. The future synthetic trend of oligostilbenes is also prospected.