采用基于密度泛函理论的第一性原理研究了Mn重掺杂对β-Ga2O3物理性能的影响。建立了β-Ga2O3模型,用Mn原子部分替代Ga原子构建Ga2-xMnxO3的超胞模型,实现对β-Ga2O3的掺杂,分别对x等于0.0625、0.125和0.25的模型进行了几何结构优化,获得稳定的晶格结构和晶胞参数,并对它们的能带结构、态密度和光学性能等进行分析。计算结果表明:Mn掺杂后,禁带宽度减小,费米能级上移进入导带,增大了载流子浓度,提高了体系的电导率;介电函数的虚部有明显的变化;β-Ga2O3在400-700nm的范围内,吸收系数和反射率均有不同程度的降低,与未掺杂的β-Ga2O3相比,能量损失谱的峰值发生了红移。
This paper adopts the first principle based on Density Functional Theory to study heavy Mn doping on physical properties of β-Ga2O3 and establishes of β-Ga2O3 model. Mn atom replaces Ga atom to construct super-cell model of Ga2-xMnxO3 to realize β-Ga2O3 doping. Geometric structure optimization is conducted for the models with x=0. 062 5, 0. 125, 0.25. Stable crystal structure and crystal cell parameters are gained. Besides, their energy band structure, state density and optical properties are analyzed. The results show that after Mn doping, energy band width decreases; Fermi level moves up and enters the conduction band; carrier concentration increases; conductivity of the system rises; the imaginary part of dielectric function has obvious changes; absorption coefficient and reflectivity of β-Ga2O3 within 400-700 nm reduce to different degrees. Compared with non-doped β-Ga2O3, the peak value of energy loss spectrum presents red-shift.