位置:成果数据库 > 期刊 > 期刊详情页
基于动态多子族群自适应群居蜘蛛优化算法
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西安航空学院,西安7100772, [2]西北工业大学电子信息学院,西安710072
  • 相关基金:国家自然科学基金(61401499);陕西省教育厅科研计划项目(16JK1395);陕西省自然科学研究计划面上项目基金(2017JM6096)
中文摘要:

为了提高群居蜘蛛优化算法(SSO)样本多样性和算法收敛性能,提出了一种基于动态多子族群自适应群居蜘蛛优化算法(DMASSO).根据算法样本多样性和算法进化程度,动态的将蜘蛛种群分成若干个主导子族群和辅助子族群,在不同子族群中分别引入自适应学习因子和高斯扰动因子改进算法个体更新方式,实现提高算法全局寻优能力和保持群体样本多样性.针对具有典型特点的测试函数仿真结果表明,较SSO算法、MSFLA算法等优化算法相比,新算法在收敛速度和收敛精度上均有明显改善.

英文摘要:

In order to improve the samples diversity and convergence properties of social spiders optimiza- tion algorithm (SSO), an adaptation social spider optimization algorithm based on dynamic multi-swarm strategy (DMASSO) is proposed. According to the algorithm samples diversity and evolutionary level, the spider population is dynamically divided into different sizes leading groups and supporting groups, and the adaptive learning factor and Gaussian disturbance factor are introduced to improve the algorithm update ways, which helps to improve the algorithm global optimization ability and maintain the diversity of the sample population. For the test results of typical characteristics functions show that compared to SSO algorithm, SFLA algorithm and other optimization algorithms, the new algorithm has better con- vergence speed and convergence accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542