位置:成果数据库 > 期刊 > 期刊详情页
Sample Bound Estimate Based Chance-constrained Immune Optimization and Its Applications
  • ISSN号:1673-629X
  • 期刊名称:《计算机技术与发展》
  • 时间:0
  • 分类:O212.2[理学—概率论与数理统计;理学—数学] TP273.5[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]College of Big Data &Information Engineering, Guizhou University, Guizhou 550025, China, [2]College of Computer Science & Technology, Guizhou University, Guizhou 550025, China
  • 相关基金:This work was supported in part by National Natural Science Foundation of China (Nos. 61563009 and 61065010) and Doctoral Fund of Ministry of Education of China (No. 20125201110003).
中文摘要:

This work investigates a simple and practical bio-immune optimization approach to solve a kind of chance-constrained programming problem without known noisy attributes, after probing into a lower bound estimate of sample size for any random variable.Such approach mainly consists of sample allocation, evaluation, proliferation and mutation. The former two, depending on a lower bound estimate acquired, not only decide the sample size of random variable and the importance level of each evolving B cell, but also ensure that such B cell is evaluated with low computational cost; the third makes diverse B cells participate in evolution and suppresses the influence of noise; the last, which associates with the information on population diversity and fitness inheritance, creates diverse and high-affinity B cells. Under such approach, three similar immune algorithms are derived after selecting different mutation rules. The experiments, by comparison against two valuable genetic algorithms, have illustrated that these immune algorithms are competitive optimizers capable of effectively executing noisy compensation and searching for the desired optimal reliable solution.

英文摘要:

This work investigates a simple and practical bio-immune optimization approach to solve a kind of chance-constrained programming problem without known noisy attributes, after probing into a lower bound estimate of sample size for any random variable. Such approach mainly consists of sample allocation, evaluation, proliferation and mutation. The former two, depending on a lower bound estimate acquired, not only decide the sample size of random variable and the importance level of each evolving B cell, but also ensure that such B cell is evaluated with low computational cost; the third makes diverse B cells participate in evolution and suppresses the influence of noise; the last, which associates with the information on population diversity and fitness inheritance, creates diverse and high-affinity B cells. Under such approach, three similar immune algorithms are derived after selecting different mutation rules. The experiments, by comparison against two valuable genetic algorithms, have illustrated that these immune algorithms are competitive optimizers capable of effectively executing noisy compensation and searching for the desired optimal reliable solution.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机技术与发展》
  • 中国科技核心期刊
  • 主管单位:陕西省工业和信息化厅
  • 主办单位:陕西省计算机学会
  • 主编:王守智
  • 地址:西安市雁塔路南段99号
  • 邮编:710054
  • 邮箱:ctad@vip.163.com
  • 电话:029-85522163
  • 国际标准刊号:ISSN:1673-629X
  • 国内统一刊号:ISSN:61-1450/TP
  • 邮发代号:52-127
  • 获奖情况:
  • 《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:21263