当模特儿的细胞的自动机(CA ) 和稳固的动力学的模拟是一个长期的困难的问题。在这份报纸我们在场为稳固的动力学的一个新二维的 CA 模型。在这个模型,稳固的身体被或者在 x 方向和 y 方向放的一套白、黑的粒子代表。对每个粒子起作用的力量被在附近附近的粒子的相对排水量的线性求和代表。在这个新模型的关键技术是八个系数矩阵的构造。理论、数字的分析证明现在的模型能被一个保守系统算术地描述。那么,它为有弹性的材料工作。在连续统限制, CA 模型恢复著名 Navier 方程。系数矩阵与 shear 模块和材料身体的泊松比率有关。与为稳固的身体的以前的 CA 模型相比,这个模型认识到在 x 方向和 y 方向变丑联合的天赋。因而,与泊松比率效果有关的波浪现象成功地被恢复。这个工作显著地在计算稳固的动力学的地里推进当模特儿的 CA 和模拟。
The Cellular Automaton (CA) modeling and simulation of solid dynamics is a long-standing difficult problem. In this paper we present a new two-dimensional CA model for solid dynamics. In this model the solid body is represented by a set of white and black particles alternatively positioned in the x- and y-directions. The force acting on each particle is represented by the linear summation of relative displacements of the nearest-neighboring particles. The key technique in this new model is the construction of eight coefficient matrices. Theoretical and numerical analyses show that the present model can be mathematically described by a conservative system. So, it works for elastic material. In the continuum limit the CA model recovers the well-known Navier equation. The coefficient matrices are related to the shear module and Poisson ratio of the material body. Compared with previous CA model for solid body, this model realizes the natural coupling of deformations in the x- and y-directions. Consequently, the wave phenomena related to the Poisson ratio effects are successfully recovered. This work advances significantly the CA modeling and simulation in the field of computational solid dynamics.