位置:成果数据库 > 期刊 > 期刊详情页
基于最小风险贝叶斯分类器的茶叶茶梗分类
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽大学数学科学学院,合肥230601
  • 相关基金:国家自然科学基金(No.61073116/F020508).
中文摘要:

目前在茶叶实际生产加工过程中,茶叶茶梗分拣自动化技术还处于不成熟阶段,分拣机械的精确度和效率还不能达到预期目的,必须通过再次人工分拣过程,大大增加了时间和人力成本。针对数码相机采集到的茶叶、茶梗数字图像,经过预处理后提取出样本的颜色和形状特征,并利用多元高斯模型进行建模,通过最小风险贝叶斯分类器对其进行分类。实验证明基于最小风险的贝叶斯分类器的分类方法是可行的,并取得了良好的分类效果。

英文摘要:

Currently, in the process of actual production and processing of tea, the technology of tea-leaf and tea-stalk automational sorting is still in their infancy, and the precision and efficiency of sorting machinery hardly can achieve the desired objective. So the time and manpower costs must be increased again through the prcocess of manual sorting. In this paper, the digital camera is used to collect numeric pictures of tea-leaf and tea-stalk, then the color and shape features of these samples are extracted after pretreatment, and model is built with the use of multi-Gaussian model. The minimum risk Bayes classifier model is used to separate tea-leaf from tea-stalk. Experi- ments show that the minimum risk-based Bayesian classifier is feasible, and can obtain good classification results.

同期刊论文项目
期刊论文 59 会议论文 9
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887