针对加筋壁板结构中存在的模型难以精确确定和多模态外界干扰等问题,基于加速度传感器,提出了一种不依赖结构精确数学模型的多模态线性自抗扰振动主动控制(Linear Active Disturbance Rejection Control)策略。由于加速度传感器和压电驱动器的异位配置不可避免地使得整个控制系统存在时延。为解决该问题,利用Smith预估器的原理,引入输出预估器来补偿时延,这样设计的自抗扰振动主动控制器能够很好地解决时延对结构振动性能的影响。基于dSPACE实时仿真平台、利用加速度传感器、压电片驱动器,设计并建立四面固支压电加筋壁板结构实验系统,对提出的控制方法进行试验比较研究。最后的试验结果表明,采用提出的具有输出预估功能的自抗扰振动控制器,能够快速有效地抑制结构的多模态振动。
In order to overcome the weakness of model uncertainties and multi-modal external disturbances of the stiffened panel,a multi-modal linear active disturbance rejection control(LADRC) with an accelerometer is proposed,which is independent of the accurate mathematical model of the structure.Because of the non-collocated sensors/actuators,the phenomenon of phase hysteresis and time delay inevitably exists in the whole control structure,which degrades the performance of the control system.To solve the problem,output predictor is introduced to compensate this delay using the Principle of Smith Predictor,which can help the ADRC active vibration controller to cancel the adverse effects caused by time delay.In order to verify the effectiveness of the proposed controller,an experimental platform for the all-clamped stiffened panel is set up using the dSPACE realtime simulation platform,accelerometers and piezoelectric actuators.Experiments are conducted to compare the proposed method with common LADRC active vibration algorithm.Experimental results demonstrate that the presented output prediction based LADRC is a fast and effective approach for suppressing multi-mode vibrations.