将数据挖掘方法引入旋转机械故障诊断领域,提出一种基于主元分析(PCA)与决策树相结合的转子故障诊断方法。该方法首先利用PCA进行特征约简,降低特征空间的维数,然后采用C4.5决策树进行训练学习以及诊断决策。通过对转子类常见故障的诊断分析,证明该方法具有比BP神经网络训练时间更短、诊断准确率稍高的特点。