本文研究下面问题的正解 {(Фp(x^(n-1)(t)))′+f(t,x,…,x^(n-1)=0,0〈t〈1, x^(i)(0)=0,0≤i≤n-3, x^(n-2)(0)-B0(x^(n-1)(0))=0,x^(n-2)(1)+B1(x^(x-1)(1))=0, 其中Фp(s) = |s|^p-2s, p 〉 1. f在点x^(i) = 0, i = 0,...,n- 2可能是奇异的.证明建立在Leray-Schauder拓扑度和Vitali收敛定理的基础上.
This paper deals with the existence of positive solutions for the problem {(Фp(x^(n-1)(t)))′+f(t,x,…,x^(n-1)=0,0〈t〈1, x^(i)(0)=0,0≤i≤n-3, x^(n-2)(0)-B0(x^(n-1)(0))=0,x^(n-2)(1)+B1(x^(x-1)(1))=0, where Фp(s) = |s|^p-2s, p 〉 1. f may be singular at x^(i) = 0, i = 0,...,n- 2. The proof is based on the Leray-Schauder degree and Vitali's convergence theorem.