位置:成果数据库 > 期刊 > 期刊详情页
Statistical learning based facial animation
  • ISSN号:1869-1951
  • 期刊名称:Journal of Zhejiang University-Science C(Computers
  • 时间:2013.7
  • 页码:542-550
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences , ChinaBeijing 100190
  • 相关基金:Project supported by thc 2013 Annual Beijing Technological and Cultural Fusion for Demonstrated Base Construction and Industrial Nurture (No. Z I31100000113007), and the National Natural Science Foundation of China (Nos. 61202324, 61271431, and 61271430)
  • 相关项目:复杂形体时空动态变化生成技术
中文摘要:

To synthesize real-time and realistic facial animation, we present an effective algorithm which combines image- and geometry-based methods for facial animation simulation. Considering the numerous motion units in the expression coding system, we present a novel simplified motion unit based on the basic facial expression, and construct the corresponding basic action for a head model. As image features are difficult to obtain using the performance driven method, we develop an automatic image feature recognition method based on statistical learning, and an expression image semi-automatic labeling method with rotation invariant face detection, which can improve the accuracy and efficiency of expression feature identification and training. After facial animation redirection, each basic action weight needs to be computed and mapped automatically. We apply the blend shape method to construct and train the corresponding expression database according to each basic action, and adopt the least squares method to compute the corresponding control parameters for facial animation. Moreover, there is a pre-integration of diffuse light distribution and specular light distribution based on the physical method, to improve the plausibility and efficiency of facial rendering. Our work provides a simplification of the facial motion unit, an optimization of the statistical training process and recognition process for facial animation, solves the expression parameters, and simulates the subsurface scattering effect in real time. Experimental results indicate that our method is effective and efficient, and suitable for computer animation and interactive applications.

英文摘要:

To synthesize real-time and realistic facial animation, we present an effective algorithm which combines image- and geometry-based methods for facial animation simulation. Considering the numerous motion units in the expression coding system, we present a novel simplified motion unit based on the basic facial expression, and construct the corresponding basic action for a head model. As image features are difficult to obtain using the performance driven method, we develop an automatic image feature recognition method based on statistical learning, and an expression image semi-automatic labeling method with rotation invariant face detection, which can improve the accuracy and efficiency of expression feature identification and training. After facial ani- mation redirection, each basic action weight needs to be computed and mapped automatically. We apply the blend shape method to construct and train the corresponding expression database according to each basic action, and adopt the least squares method to compute the corresponding control parameters for facial animation. Moreover, there is a pre-integration of diffuse light distribu- tion and specular light distribution based on the physical method, to improve the plausibility and efficiency of facial rendering. Our work provides a simplification of the facial motion unit, an optimization of the statistical training process and recognition process for facial animation, solves the expression parameters, and simulates the subsurface scattering effect in real time. Experimental results indicate that our method is effective and efficient, and suitable for computer animation and interactive applications.

同期刊论文项目
期刊论文 8 会议论文 8
同项目期刊论文