位置:成果数据库 > 期刊 > 期刊详情页
基于改进形状因子的钵体秧盘播种质量检测方法研究
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:S223.13[农业科学—农业机械化工程;农业科学—农业工程] TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]佳木斯大学信息电子技术学院,佳木斯154007, [2]华南农业大学工程学院,广州150642, [3]佳木斯大学机械工程学院,佳木斯154007, [4]天津理工大学机械工程学院,天津300384
  • 相关基金:国家自然科学基金资助项目(51275209)、黑龙江省普通高等学校青年学术骨干支持计划资助项目(1251G061)、黑龙江省高校科技成果产业化前期研发培育资助项目(1253CGZH06)、佳木斯大学自然科学研究面上资助项目(1321201575)和佳木斯大学研究生科技创新资助项目(LM2014_011)
中文摘要:

为实现超级稻育秧播种过程按“穴粒数”播补种的思路,需要对播种钵体秧盘上每个穴位的种子数进行精确检测。传统的单一面积法和平均灰度值法虽然简单,但检测精度较低,无法准确识别每个穴位种子粒数,最终影响播种质量。考虑到种子单个连通区域的形状参数与粒数之间存在密切关系,提出一种基于改进形状因子的钵体秧盘播种质量检测方法。首先采用RGB加权法对彩色图像进行灰度化处理,Otsu分割阈值算法进行二值化,形态学算法进行去噪;再利用掩膜定位技术提取出秧盘中每个穴位内的种子图像并进行连通域检测,测量单个连通域的面积、周长、最小外接多边形面积等参数,计算出改进后的形状因子,结合单连通域面积大小,完成单个连通域种子0粒(含杂质)、1粒、2粒、3粒、4粒及以上情况的检测,并通过累加实现穴粒数的检测。实验结果表明,该方法对于单个连通域内种子数在0~3粒时识别准确率均达到95%以上,4粒以上种子的识别率达到90%;穴粒数的平均检测准确率均达到95%以上,每幅图像平均处理时间为0.518s,满足在线检测的需求,为后续播补种提供了参考依据。

英文摘要:

To achieve super rice seeding according to the numbers of seeds per bunch, it requires precise detect the seeding quantity per bunch in the potted seeding tray. The traditional detection method based on the area and average gray has low detection precision, which could not accurately identify the number of seeds per bunch and reduce adult seedling rate. There is a close relationship between the shape features of seeds in single connected region and the seeding quantity. In this article, a method base on the improved shape factor was presented to detect the seeding quantity per bunch in the potted seedling tray. Firstly,the RGB weighting method was used to gray the color image, the Otsu algorithm was used to binary image processing, morphological filtering algorithm was used to remove the image noise. Secondly, the small image of seeds per punch in potted seedling tray was extracted by the masked location-based technology and the single connected region on' the small image was detected. Thirdly,the shape features of each seed were extracted, such as the area and perimeter of single connected region and area of the minimum enclosing circumscribing convex polygon. Then, the improved shape factor was computed according to shape features of each seed. Lastly, the improved shape factor and the area of single connected region were used to classify seed connected regions into cavity (including impurities), one particle, two particles, three particles, or four particles and above. After adding up the particles of each bunch, the seedling tray seeding quantity can be obtained. The result showed that the detection accuracy of the number of seeds between zero particle and three particles in every single connected region was up to 95% and the detection accuracy of the number of seeds more than four particles in every single connected region was up to 90%. The detection accuracy of the number of seeds in every bunch was up to 93%. Each image was processed less than 0. 518 seconds. It' s proved that the method of potted

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884