位置:成果数据库 > 期刊 > 期刊详情页
一种面向目标检测的部件学习方法
  • ISSN号:1000-1239
  • 期刊名称:计算机研究与发展
  • 时间:2013.9.1
  • 页码:1902-1913
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]嵌入式与网络计算湖南省重点实验室,长沙410073
  • 相关基金:国家自然科学基金项目(60873047,61173036)
  • 相关项目:以汽车为例的CPS若干问题研究
中文摘要:

基于部件的目标检测模型主要研究如何利用部件获得目标的局部判别特征,而极少关注部件形式及选取策略对检测性能的影响.首先从特征学习的角度分析了部件选取策略对学习弱部件模型的影响,提出了一种自适应的部件学习方法.该方法无须部件层标注,在搜索判别部件的同时利用样本自身的图像分布特点自动定位到语义相关的部件,从而保证特征学习的判别性和有效性.其次,针对训练集的标注样本经常存在不完整或部分遮挡等事实,提出了一种简单有效的部件剪技策略以降低噪声部件的比例.实验面向PASCAI。VOC2007]2010数据集评估了4种形式的部件模型.实验结果验证了自适应部件学习算法在模型检测上的有效性,同时表明了弱部件模型经过剪技策略优化后具有更快的学习收敛性.

英文摘要:

Previous work on part-based models for object detection has concentrated on searching locally discriminative features representing objects based on notion of parts. There is little research on how to select parts effectively and what kind of parts could improve the object detections. This paper investigates the learning problem of object parts with weakly labeled data, and proposes an adaptive approach for part selection. Without part-level supervision, for each training example this approach first detects seed windows of parts using single-part classifiers and then localizes parts in local regions via the image-specific distribution. The selected parts, which contain discriminative and relevant features, are used to train global parameters. Addressing the partial object occlusions in training examples, a pruning strategy is introduced to reduce the proportion of noise parts during learning iterations. The experimental results on PASCAL VOC 2007 and 2010 datasets demonstrate that the proposed part learning method gets an improvement on object detections compared with three classical part models, and the pruning strategy can speed up the convergence rates of model learning.

同期刊论文项目
期刊论文 95 会议论文 15 获奖 3
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349