位置:成果数据库 > 期刊 > 期刊详情页
基于三通道卷积神经网络的纹身图像检测算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南昌大学信息工程学院,南昌330031, [2]南昌大学经济管理学院,南昌330031
  • 相关基金:国家自然科学基金资助项目(61662044)。
中文摘要:

针对纹身图像的特点和卷积神经网络(CNN)在全连接层对图像特征抽取能力的不足问题,提出一种三通道的卷积神经网络纹身图像检测算法,并进行了三方面的改进工作。首先,针对纹身图像的特点改进图像预处理方案;其次,设计了一个基于三通道全连接层的卷积神经网络进行特征提取,并对特征建立索引,有效地提高了网络对不同尺度下空间信息的提取能力,实现了对纹身图像的高效检测;最后,通过两个数据集验证了算法的泛化能力。实验结果表明,对NIST数据集所提预处理方案比Alex方案有总正确率提高0.17个百分点,纹身图像正确率提高0.29个百分点。在所提预处理方案下,提出的算法在标准的NIST纹身图像集上具有明显的优势,正确率从NIST公布的最优值96.3%提高到99.1%,提高了2.8个百分点;相对于传统的CNN算法,正确率从98.8%提高到99.1%,提高了0.3个百分点。在Flickr数据集上也有相应的性能提升。

英文摘要:

According to the characteristics of tattoo images and the insufficient ability of the Convolutional Neural Network (CNN) to extract the image features in the full connection layer, a tattoo image detection algorithm based on three-channel CNN was proposed, and three aspects of improvement work were carried out. Firstly, the image preprocessing scheme was improved for the characteristics of tattoo images. Secondly, a CNN based on three-channel fully connected layer was designed to extracted and index the features. The spatial information extraction ability of different scales was enhanced effectively, and the efficient detection of tattoo images was realized. Finally, the generalization ability of the algorithm was verified by two data sets. The experimental results on the NIST data set show that the proposed preprocessing scheme has a 0.17 percentage points increase of total correct rate and a 0.29 percentage points increase of correct rate for tattoo images than Alex scheme. Under the proposed preprocessing scheme, the proposed algorithm has obvious advantages on the standard NIST tattoo image set. The correct rate of the proposed algorithm reaches 99.1%, which is higher than 96.3%, the optimal value published by NIST; and 98.8%, obtained by traditional CNN algorithm. There is also a performance improvement on the Flickr data set.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679