位置:成果数据库 > 期刊 > 期刊详情页
基于改进当前统计模型的自适应无源跟踪算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP971[自动化与计算机技术]
  • 作者机构:[1]空军工程大学航空航天工程学院,西安710038
  • 相关基金:国家自然科学基金(No.61132007);航空科学基金(No.20145596024).
中文摘要:

针对无源跟踪中,标准当前统计模型无法自适应调整加速度极限值的缺点,设计了一种修正系数来通过机动目标的当前加速度自适应调整模型的加速度极限值,同时利用模糊控制的方法对修正系数的取值进行实时调整,实现了对当前统计模型的改进。最后结合容积卡尔曼滤波算法构造基于改进当前统计模型的自适应无源跟踪算法。仿真结果表明,相比基于标准当前统计模型的自适应跟踪算法,新算法对非机动目标、弱机动目标以及强机动目标都有更好的跟踪效果。

英文摘要:

Aiming at the defect that normal current statistical model can not adjust the limits of target acceleration adaptivelyin passive tracking,a correctional coefficient is designed,through the current acceleration of maneuvering targets toadjust the limits of target acceleration adaptively.Meanwhile,with fuzzy control,the correctional coefficient is adjusted inreal-time,then the model is improved.Finally,this improved model is combined with a Cubature Kalman Filter(CKF)toform the modified current statistic model for the passive tracking algorithm.Simulation results show that,compared withthe adaptive tracking algorithm based on normal current statistical model,the new algorithm has better performance ontracking non-maneuvering and weak and strong maneuvering targets.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887