位置:成果数据库 > 期刊 > 期刊详情页
Algorithmic tangent modulus at finite strains based on multiplicative decomposition
  • ISSN号:0253-4827
  • 期刊名称:Applied Mathematics and Mechanics (English Edition
  • 时间:2014.3
  • 页码:345-358
  • 分类:TB115[理学—数学;理学—应用数学]
  • 作者机构:State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering,China University of Mining and Technology (Beijing)
  • 相关基金:Project supported by the National Natural Science Foundation of China(Nos.41172116,U1261212,and 51134005)
  • 相关项目:气体吸附诱致应力煤岩膨胀的多尺度模型研究
中文摘要:

The algorithmic tangent modulus at finite strains in current configuration plays an important role in the nonlinear finite element method. In this work, the exact tensorial forms of the algorithmic tangent modulus at finite strains are derived in the principal space and their corresponding matrix expressions are also presented. The algorithmic tangent modulus consists of two terms. The first term depends on a specific yield surface, while the second term is independent of the specific yield surface. The elastoplastic matrix in the principal space associated with the specific yield surface is derived by the logarithmic strains in terms of the local multiplicative decomposition. The Drucker-Prager yield function of elastoplastic material is used as a numerical example to verify the present algorithmic tangent modulus at finite strains.

英文摘要:

The algorithmic tangent modulus at finite strains in current configuration plays an important role in the nonlinear finite element method. In this work, the exact tensorial forms of the algorithmic tangent modulus at finite strains are derived in the principal space and their corresponding matrix expressions are also presented. The algorithmic tangent modulus consists of two terms. The first term depends on a specific yield surface, while the second term is independent of the specific yield surface. The elastoplastic matrix in the principal space associated with the specific yield surface is derived by the logarithmic strains in terms of the local multiplicative decomposition. The Drucker-Prager yield function of elastoplastic material is used as a numerical example to verify the present algorithmic tangent modulus at finite strains.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用数学和力学:英文版》
  • 主管单位:交通部
  • 主办单位:上海大学
  • 主编:周哲玮
  • 地址:上海市宝山区上大路99号上海大学122信箱
  • 邮编:200444
  • 邮箱:amm@department.shu.edu.cn
  • 电话:021-66135219 66165601
  • 国际标准刊号:ISSN:0253-4827
  • 国内统一刊号:ISSN:31-1650/O1
  • 邮发代号:
  • 获奖情况:
  • 上海市优秀科技期刊一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,美国应用力学评论
  • 被引量:541