A novel determinate joint remote preparation scheme of an arbitrary W -class quantum state is proposed to improve the probability of successful preparation. The presented scheme is realized through orthogonal projective measurement of the Hadamard transferred basis, which converts a global measurement to several local measurements. Thus orthogonal projective measurement of the Hadamard transferred basis enables quantum information to be transmitted from different sources simultaneously, which is a breakthrough for quantum network node processing. Finally, analysis shows the feasibility and validity of the proposed method, with a 100% probability of successful preparation.
A novel determinate joint remote preparation scheme of an arbitrary W-class quantum state is proposed to improve the probability of successful preparation. The presented scheme is realized through orthogonal projective measurement of the Hadamard transferred basis, which converts a global measurement to several local measurements. Thus orthogonal projective measurement of the Hadamard transferred basis enables quantum information to be transmitted from different sources simultaneously, which is a breakthrough for quantum network node processing. Finally, analysis shows the feasibility and validity of the proposed method, with a 100% probability of successful preparation.