我们学习凸的 hypersurfaces 的进化与在到沿着它的外部正常的 H f 的一个率平等者起始在 H 是泛音的逆的地方,意味着弯曲一光滑,关门,并且一致地凸的 hypersurface。我们发现一 *> 0 并且关于各向异性的功能 f 的一个足够的条件如果 >* ,那么仍然保持一致地凸并且作为 t + 并且它的可伸缩膨胀到无穷,,收敛到一个范围。另外,集中结果被概括到进化率是 logH 木头 f 而不是 H-f 的充分非线性的在盒子。
We study the evolution of convex hypersurfaces H(., t) with initial H(., 0) = 0H0 at a rate equal to H - f along its outer normal, where H is the inverse of harmonic mean curvature of H(., t), H0 is a smooth, closed, and uniformly convex hypersurface. We find a θ^* 〉 0 and a sufficient condition about the anisotropic function f, such that if θ 〉 θ^*, then H(.,t) remains uniformly convex and expands to infinity as t →∞ and its scaling, H(-, t)e^-nt, converges to a sphere. In addition, the convergence result is generalized to the fully nonlinear case in which the evolution rate is log H - log f instead of H - f.