提出了基于Gerschgorin圆盘理论的宽带频谱感知算法:Gerschgorin似然估计算法和Gerschgorin圆盘半径迭代算法。通过在宽带频谱感知中引入 Gerschgorin 圆盘理论,将认知无线电用户频谱观测数据中噪声圆盘空间和信号圆盘空间进行分离,并基于对主用户所占用子频段集合势的估计,实现对宽带授权频谱中多个子频段状态的监测。为了进一步提高感知性能,还提出利用宽带频谱中主用户信号占用子频段的连续性特性改善算法性能。理论推导和仿真结果表明,在信噪比较小时,Gerschgorin似然估计算法较基于信息论准则的宽带感知算法具有更稳定的检测性能;Gerschgorin圆盘半径迭代算法与传统能量检测方法相比,优势在于不依赖任何噪声功率先验信息,且在采样次数较少情况下的感知错误率较小。因此,基于Gerschgorin圆盘理论的频谱感知更适合于实际CR系统,可为宽带频谱感知提供行之有效的算法实施方案。
Gerschgorin disk theorem (GDT) based wideband spectrum sensing methods, namely Gerschgorin likelihood estimate(GLE) algorithm and Gerschgorin disk radii iteration(GDRI) algorithm, were proposed for cognitive radios. By means of exploring the possibility of utilizing GDT in wideband spectrum sensing, the occupied and the idle licensed subbands was distingwished by respectively identifying the cardinalities of the corresponding subband sets. With an aim to strengthen the performance of GLE and GDRI, a subband continuity based wideband sensing algorithm was further proposed. Simulation results show that GLE sensing performance remains consistent when the SNR is low, whereas GDRI requires no a priori knowledge of the noise power and the PU signal and it overcomes the practical problem of small spectrum observation samples. With salient performance and practical feasibility, the proposed GLE and GDRI may serve as candidate wideband sensing technologies for cognitive radios.