叶面积指数(LAI)是森林生态系统碳循环研究的重要观测数据,也是驱动森林生态系统模型模拟碳循环的重要参数.本文以毛竹林和雷竹林为研究对象,首先利用双集合卡尔曼滤波,同化两种竹林生态系统观测站点2014—2015年MODIS LAI时间序列数据,然后将同化的高质量毛竹LAI和雷竹LAI作为输入数据驱动BEPS模型,模拟两种竹林生态系统总初级生产力(GPP)、净生态系统碳交换量(NEE)和总生态系统呼吸(TER)等碳循环数据,并用通量站实际观测值评价模拟结果;另外,还对比不同质量LAI对碳循环模拟的影响.结果表明: 双集合卡尔曼滤波同化得到的毛竹林和雷竹林LAI与实测LAI之间的相关关系极为显著,R^2分别为0.81和0.91,且均方根误差和绝对偏差均较小,极大地提高了MODIS LAI的产品精度;在同化得到的LAI驱动下,BEPS模型模拟的毛竹林GPP、NEE和TER与实际观测值之间的R^2分别为0.66、0.47和0.64,雷竹林分别为0.66、0.45和0.73,模拟结果均好于三次样条帽盖算法平滑LAI模拟得到的GPP、NEE和TER,其中,毛竹林、雷竹林NEE的模拟精度提高幅度最大,分别为11.2%和11.8%.
LAI is one of the most important observation data in the research of carbon cycle of forest ecosystem, and it is also an important parameter to drive processbased ecosystem model. The Moso bamboo forest (MBF) and Lei bamboo forest (LBF) were selected as the study targets. Firstly, the MODIS LAI time series data during 2014-2015 was assimilated with Dual Ensemble Kalman Filter method. Secondly, the high quality assimilated MBF LAI and LBF LAI were used as input dataset to drive BEPS model for simulating the gross primary productivity (GPP), net ecosystem exchange (NEE) and total ecosystem respiration (TER) of the two types of bamboo forest ecosystem, respectively. The modeled carbon fluxes were evaluated by the observed carbon fluxes data, and the effects of different quality LAI inputs on carbon cycle simulation were also studied. The LAI assimilated using Dual Ensemble Kalman Filter of MBF and LBF were significantly correlated with the observed LAI, with high R^2 of 0.81 and 0.91 respectively, and lower RMSE and absolute bias, which represented the great improvement of the accuracy of MODIS LAI products. With the driving of assimilated LAI, the modeled GPP, NEE, and TER were also highly correlated with the flux observation data, with the R^2 of 0.66, 0.47, and 0.64 for MBF, respectively, and 0.66, 0.45, and 0.73 for LBF, respectively. The accuracy of carbon fluxes modeled with assimilated LAI was higher than that acquired by the locally adjusted cubicspline capping method, in which, the accuracy of mo-deled NEE for MBF and LBF increased by 11.2% and 11.8% at the most degrees, respectively.