研究了Sine-Gordon方程在广义渐近惯性流形上的常微分方程组(ODE)的混沌控制.引入时滞反馈控制到Sine-Gordon的ODE形式,使得对应的Melnikov函数不再为零.因此横截同宿轨道消失,即受控系统中的混沌运动被镇压.在一定的参数范围,原来的混沌吸引子中不稳定的周期轨道变为稳定的周期轨道.数值模拟结果表明了理论分析的正确性.
The control of chaos for ODE on the generalized approximate inertial manifold of Sine-Gordon equation was investigated. The introduction of time-delayed feedback control to the ODE of Sine-Gordon equation made the corresponding Melnikov function no longer be zero. In consequence, the homoclinic orbit disappeared, i.e. the chaotic motion in the controlled system was suppressed. For a certain range of parameters, the unstable periodic orbits in the chaotic attractor can be changed into the stable periodic orbits. The results of numerical simulation support the theoretical analysis.