流电的代替,为生产空金属性的 nanostructures 的流行策略之一,在过去享受了大成功。然而,尽管这些 nanoparticles 能与控制得好的尺寸,形状,和结构被生产,它很少与 Au nanoparticles 被用作 self-sacrificed 模板。这里,从核心壳 Au@Ag nanorods 的 Ag 和 Au 被表明为生产空 nanostructures 涉及流电的代替。金属性的 Au 的提高的氧化能从 Au 被归因于在 Au 和 Ag 和唯一的费用赔偿之间的靠近的接触到 Ag,哪个为经由流电的代替蚀刻 Au 是不可缺少的。由于这反应,这些二金属的 nanorods 经验从 nanorattles 的结构的进化到尖端空的 nanorods,并且最后到多孔的 nanotubes。nanotubes 展览高度在蚁的酸的 electrooxidation 的催化活动。这些结果不仅揭示金属性的 Au 能被在温和条件下面代替的内在的机制,而且为流电的代替扩展 self-sacrificed 模板的选择,它是在许多应用的重要反应。
Galvanic replacement, one of the popular strategies for producing hollow metallic nanostructures, has enjoyed great success in the past. However, it is rarely used with Au nanopartides as the self-sacrificed templates, even though these nanoparticles can be produced with well-controlled size, shape, and structure. Here, both Ag and Au from the core-sheU Au@Ag nanorods are demonstrated to be involved in the galvanic replacement for producing hollow nanostructures. The enhanced oxidation of metallic Au could be attributed to the close contact between Au and Ag and the unique charge compensation from Au to Ag, both of which are indispensable for the etching of Au via galvanic replacement. As a result of this reaction, these bimetallic nanorods experience a structural evolution from nanorattles, to tip-empty nanorods, and eventually to porous nanotubes. The nanotubes exhibit high catalytic activities in the electrooxidation of formic acid. These results not only disclose the underlying mechanism by which metallic Au could be replaced under mild conditions, but also expand the selection of self-sacrificed templates for galvanic replacement, which is an important reaction in many applications.