设H为无限维的复可分Hilbert空间,B(H)为H上的有界线性算子的全体。设T=(A B -B A)∈B(HH)为算子矩阵。本文在Bk=0(k∈N且k≥2),AB=BA时,用A的单值延拓性质的紧摄动和Browder定理的紧摄动分别刻画了T的单值延拓性质的紧摄动和Browder定理的紧摄动。
Let H be a separable complex Hilbert space and B (H) be the algebra of all bounded linear operators. Let T=(A B -B A) be an operator matrix,which acts on B( HH). We character the compact perturbations of single-valued extension property and Browder theorem about T by A's respectively,when Bk= 0( k∈N and k≥2),AB = BA.