位置:成果数据库 > 期刊 > 期刊详情页
基于免疫的异常检测中实值自体集优化算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP393.08[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨理工大学计算机科学与技术学院,哈尔滨150080
  • 相关基金:国家自然科学基金资助项目(60671049)
中文摘要:

针对免疫异常检测一直被忽视的实值自体集多分区、样本重叠率高和噪声等现象,以及造成的检测器生成代价高和边界漏洞等问题,提出一种实值自体集优化算法。算法通过模糊聚类算法处理集合多分区问题,利用高斯理论对自体集中的噪声样本、高重叠率等问题进行处理。通过Iris数据集和网络数据验证,算法可以有效地解决以上问题,提高生成检测器的效率和系统检测率。

英文摘要:

The real-valued self set in the immunity-based anomaly detection which is used to train detectors has some defects: multi-area,overlapping,noising sample,etc,which can cause some problems,such as the boundary holes of detector set,the high cost of generating detectors,etc.To solve the problems,this paper proposed a real-valued self-set optimization algorithm which used fuzzy clustering algorithm and Gaussian-distribution theory.The fuzzy clustering delt with multi-area and the Gaussian-distribution delt with the overlapping and noising.It tested algorithm by Iris data and real network data.Experimental results show that,the optimized self set can increase the efficiency of detector generation effectively,and improve the system's detection rate.

同期刊论文项目
期刊论文 52 会议论文 7
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049