位置:成果数据库 > 期刊 > 期刊详情页
New Class of Antimagic Join Graphs
  • ISSN号:0255-7797
  • 期刊名称:《数学杂志》
  • 时间:0
  • 分类:O157.5[理学—数学;理学—基础数学]
  • 作者机构:[1]Department of Foundation, North China Institute of Science and Technology, Sanhe 065201, Hebei, China, [2]Department of Mathematics, Capital Normal University, Beijing 100048, China
  • 相关基金:Foundation item: Supported by the National Natural Science Foundation of China(11371052,11271267,10971144,11101020), the Natural Science Foundation of Beijing (1102015), the Fundamental Research Funds for the Central Universities(2011 B019, 3142013104)
中文摘要:

A labeling/of a graph G is a bijection from its edge set E(G) to the set {1,2,…,|E(G)|},which is antimagic if for any distinct vertices x anAy,the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y.A graph G is antimagic if G has an f which is antimagic.Hartsfield and Ringel conjectured in 1990 that every connected graph other than K2 is antimagic.In this paper,we show that if G1 is an m-vertex graph with maximum degree at most 6r+l,and G2 is an n-vertex(2r)-regular graph(m≥n≥3),then the join graph G1 v G2 is antimagic.

英文摘要:

A labelingfof a graph G is a bijection from its edge set E(G) to the set {1,2,...,|E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has anfwhich is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K2 is antimagic. In this paper, we show that if G1 is an m-vertex graph with maximum degree at most 6r+ 1, and G2 is an n-vertex (2r)-regular graph (m≥n≥3), then the join graph G1 v G2 is antimagic.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学杂志》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:武汉大学 湖北省数学学会 武汉数学学会
  • 主编:陈化
  • 地址:湖北武汉大学
  • 邮编:430072
  • 邮箱:jmath@whu.edu.cn
  • 电话:027-68754687
  • 国际标准刊号:ISSN:0255-7797
  • 国内统一刊号:ISSN:42-1163/O1
  • 邮发代号:38-71
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:3910