位置:成果数据库 > 期刊 > 期刊详情页
煤与瓦斯突出预测的GA-SVM模型及应用
  • ISSN号:1005-8141
  • 期刊名称:《资源开发与市场》
  • 时间:0
  • 分类:X928.03[环境科学与工程—安全科学]
  • 作者机构:[1]辽宁工程技术大学矿业学院,辽宁阜新123000
  • 相关基金:国家自然科学基金(编号:51204086).
中文摘要:

为了对煤与瓦斯突出进行有效预测,将遗传算法和支持向量机相结合,提出煤与瓦斯突出预测的GA-SVM模型.以我国典型的煤与瓦斯突出煤矿15个实例为样本,以交叉验证准确率作为遗传算法的适应度函数,搜索得到径向基核SVM最优惩罚因子C=28.8786、宽度函数σ=0.16508,利用最优参数建立煤与瓦斯突出预测GA-SVM模型进行预测,结果与实际完全一致.应用该模型对云南恩洪煤矿8个突出实例进行预测,并与单项指标法、综合指标法和BP神经网络进行比较.研究结果表明,煤与瓦斯突出预测GA-SVM模型具有较高的可靠性和精确性,能对煤与瓦斯突出进行有效预测.

英文摘要:

In order to predict coal and gas outburst effectively, this paper which combined with genetic algorithm(GA) and supported vector machine( SVM), established a coal and gas outburst prediction GA- SVM model. 15 typical examples of coal and gas outburst coal were collected to es- tablish GA - SVM model. The fitness function of genetic algorithm were established by the cross validation accuracy of the samples, and the final search best results of penalty factor C = 28. 8786 and the width function of RBF a = 0.16508. Using the optimal parameters to establish coal and gas outburst prediction GA - SVM model, and accuracy of the model was perfect. To further verify the accuracy of GA - SVM model, coal and gas outburst instances of Yunnan Enhong mine was used to verify this model, showing that GA - SVM model had an excellent performance and a high prediction accuracy. The results showed GA - SVM model had a high credibility in assessing coal and gas outburst, so it was a new approach to forecast the coal and gas outburst, which could be applied to practical engineering.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《资源开发与市场》
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省自然资源研究所
  • 主编:
  • 地址:成都市武侯区一环路南二段24号
  • 邮编:610041
  • 邮箱:zykfysc@188.com,zykfysc@188.com
  • 电话:028-68107829 68107828
  • 国际标准刊号:ISSN:1005-8141
  • 国内统一刊号:ISSN:51-1448/N
  • 邮发代号:62-58
  • 获奖情况:
  • 全国中文核心期刊,全国优秀科技期刊,全国优秀地理期刊,四川省优秀期刊,《CAJ-CD规范》执行优秀期刊,2013年被评为"中国国际影响力TOP期刊"
  • 国内外数据库收录:
  • 美国化学文摘(网络版)
  • 被引量:14508