为了提出一种颜色特征与极化特征相结合的极化SAR图像分类方法,首先,通过极化目标分解得到极化特征向量;然后,采用最佳指数模型方法生成极化SAR的假彩色合成图像,并提取颜色特征向量;最后,将这2种特征组成综合特征向量,利用SVM方法进行分类。利用Radar Sat-2的Pol SAR数据进行了SAR图像分类实验,并对分类结果进行定性和定量比较分析。实验结果表明,颜色特征的加入能有效提高极化SAR图像的分类精度。