位置:成果数据库 > 期刊 > 期刊详情页
基于变量分裂法的稀疏约束并行磁共振图像重建
  • 期刊名称:模式识别与人工智能
  • 时间:0
  • 页码:-
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江大学计算机科学与技术学院,杭州310027, [2]中国计量学院信息工程学院计算机科学与技术系,杭州310018, [3]温州大学数学与信息科学学院,温州325035
  • 相关基金:国家973计划项目(No.2009CB320804)、国家青年科学基金项目(No.30900332,51107130)、浙江省科技厅重大科技专项重点国际科技合作研究项目(No.2010C14010)资助
  • 相关项目:永磁MRI系统涡流屏蔽问题及梯度场非线性失真校正研究
中文摘要:

针对并行磁共振成像技术中,数据欠采样造成重建图像存在的混迭伪影和噪声问题,提出一种稀疏约束下并行磁共振的图像重建算法.该算法将一阶差分作为稀疏投影算子,构建在各向异性全变分最小化约束下并行磁共振的图像重建问题.同时,提出基于变量分裂法的求解方法,并在不同实验环境下分析该算法的有效性和鲁棒性.结果表明该算法可显著提高加速因子最大时并行磁共振重建图像的质量.

英文摘要:

In order to reduce the aliasing artifacts and noise in the reconstructed images due to under-sampling data, a sparse constrained image reconstruction algorithm is proposed for parallel magnetic resonance imaging. In this paper, first-order difference is viewed as the sparse project Operator, and a parallel mag- netic resonance image reconstruction algorithm restrained by anisotropic total variation minimization is re- searched. Meanwhile, a solution based on variable splitting method is proposed, and the effectiveness and robustness of the proposed algorithm are analyzing in some specified experimental environments. The results show that the quality of reconstructed images is evidently improved for parallel magnetic resonance imaging by the proposed method at a maximum acceleration factor.

同期刊论文项目
同项目期刊论文