位置:成果数据库 > 期刊 > 期刊详情页
基于神经网络预报的烧结矿化学成分控制专家系统
  • ISSN号:2095-9389
  • 期刊名称:《工程科学学报》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中南大学资源加工与生物工程学院,长沙410083, [2]攀枝花新钢钒股份有限公司炼铁厂,攀枝花617022
  • 相关基金:国家自然科学基金和上海宝钢集团公司联合资助项目(No.50374080),中南大学研究生教育创新工程基金资助项目(No.042310011)
中文摘要:

采用带动量项的线性再励自适应变步长BP神经网络算法,建立了基于多周期运行模式的烧结矿化学成分预报模型;使用基于数据库技术的知识库和正向推理的推理机,开发了化学成分控制专家系统.系统自投入运行以来,预报模型命中率稳定在90%以上,操作指导建议采纳率达到92%,实现了对烧结矿化学成分的稳定控制.

英文摘要:

A sintering predictive model of chemical composition based on many periods was developed by the BP neural network algorithm with appending momentum and adaptive variable step size linear reinforcement. Using knowledge base that was based on database technology and illation with forward inference, an expert system was designed for controlling sinter chemistry. Since the system was plunged into application, the hit ratio of the predictive model is over 90% steadily, and the acceptance of operation suggestion is 92 %. The goal of controlling chemical composition steadily is actualized.

同期刊论文项目
期刊论文 22 会议论文 5 获奖 3
同项目期刊论文
期刊信息
  • 《工程科学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:北京科技大学
  • 主编:张欣欣
  • 地址:北京市海淀区学院路30号
  • 邮编:100083
  • 邮箱:xuebaozr@ustb.edu.cn
  • 电话:010-62332875
  • 国际标准刊号:ISSN:2095-9389
  • 国内统一刊号:ISSN:10-1297/TF
  • 邮发代号:82-303
  • 获奖情况:
  • 首届国家期刊奖,第二届全国优秀科技期刊评比一等奖,全国高等学校自然科学学报系统优秀学报评比一等奖,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:392