对于适合n≥i≥0的整数n和i,设(ni)=n!/(i!(n-i)!)是二项式系数;对于非负整数l,设Fl是第l个Fibonacci数,对于给定的非负整数k和正整数n,设f(k,3,n)是数列{(ni)}ni=0和{F3k+i}ni=0的卷积,即f(k,3,n)=(n0)F3k+(n1)F3k+1+…+(nn)F3k+n.证明了当k≥n时,等式f(k,3,n)=1/5(2nF3k+2n-(-1)k+n3Fk-n)成立,当k
For any integers n and i with n≥ i ≥ 0 ,let ni =n!i!(n - i)!be a binomial coefficient . For any nonnegative integer l ,let Fl be the l‐th Fibonacci number .Further ,for any fixed non‐negative integer k and any fixed positive integer n ,let f (k ,3 ,n) denotes the convolution of se‐quence ni ni= 0 and{F3k+ i}ni= 0 ,namely , f (k ,3 ,n) = n0 F3k + n1 F3k+1 + ? + nn F3k+ n .It is proved that f(k ,3 ,n)= 15 (2nF3k+2n -(-1)k+n3Fk-n)or f(k ,3 ,n)= 15 (2nF3k+2n+3Fn-k)accord‐ing to k ≥ n or not .