位置:成果数据库 > 期刊 > 期刊详情页
基于特征提取和RBF神经网络的ECT流型辨识
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:0
  • 页码:175-178
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨理工大学计算机科学与技术学院,哈尔滨150080
  • 相关基金:国家自然科学基金 No.60572153; 高等院校博士学科点专项科研基金No.200802140001; 黑龙江省自然科学基金(No.F200609); 教育部春晖计划(No.Z2007-1-15013); 哈尔滨理工大学青年科学基金(No.2008XQJZ014)~~
  • 相关项目:基于电容层析成像技术的中药提取过程成像研究
中文摘要:

针对传统ECT流型辨识方法效率低的问题,提出了一种基于特征提取和径向基函数神经网络相结合的ECT图像流型辨识的方法,该方法通过对各种特征参数的定义,完成对ECT系统测得的电容值进行特征提取,然后将提取的特征值作为RBF神经网络的输入完成流型辨识。仿真和实验结果表明,与基于BP神经网络的图像流型辨识方法相比,该方法具有识别速度快和效率高等优点,为ECT图像流型识别的研究提供了一个新的思路。

英文摘要:

To improve the traditional methods of identification of flow pattern recognition rate,a flow pattern identification method of ECT images based on the feature extraction and radial basis function neural network is presented.In this method, the definition of feature parameters is presented,feature extraction is finished according to the capacitance values measured from ECT system,and the feature values extracted are input to RBF network to finish flow recognition.Experimental results and simulation data indicate that compared with the method of BP neural network,the new method is superior both in speed and in efficiency,and this method presents a new feasible and effective way to research the image flow pattern identification for electrical capacitance tomography system.

同期刊论文项目
期刊论文 31 会议论文 6 获奖 4 专利 1
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887