位置:成果数据库 > 期刊 > 期刊详情页
基于情感常识的微博事件公众情感趋势预测
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:大连理工大学信息检索研究室,辽宁大连116023
  • 相关基金:国家自然科学基金(61632011,61562080); 辽宁省自然科学基金(201202031,201402003)
中文摘要:

微博日益成为一个巨大而复杂的互联网舆论平台。分析微博中特定话题的情感趋势对于了解网络舆情、分析产品销量趋势显得尤为重要。该文使用微博进行真实事件公众情感趋势预测:首先,考虑到微博特征稀疏、上下文缺失的特性,借助词语上下位语义关系对其进行语义扩充;其次,使用语义特征和情感常识知识构造双层分类方法进行情感分析;最后,对特定事件在连续时间段内的微博使用时序情感分析方法进行公众情感趋势预测。实验证明,该情感分析方法准确率相对于传统分类方法有明显的提高,在此基础上的情感趋势预测符合事件的真实发展状况。

英文摘要:

Microblog is a large and complicated public opinion platform on the Internet. In this paper, we demonstrate how microblogs can be used to predict real world public sentiment trends of events. Firstly, considering the special properties of mieroblogs, absence of context and sparseness of feature, we use the hyponymy relationship between words to do semantic extension for each microblog. Secondly, with the help of semantic feature and affective commonsense knowledge, we can decide the sentiment of each microblog through constructing a double-layer text classifier. Finally, public sentiment trend prediction of each event is performed by using time series sentiment analysis of microblogs. The experiment results show that our sentiment analysis method has a better performance than state--of--the art classification methods. Besides, the sentiment trends of events are consistent with the development of the real world situation to a large degree.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136