位置:成果数据库 > 期刊 > 期刊详情页
融合链接拓扑结构和用户兴趣的朋友推荐方法
  • ISSN号:1000-436X
  • 期刊名称:《通信学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院计算技术研究所,北京100190, [2]中国科学院信息工程研究所,北京100093
  • 相关基金:国家高技术研究发展计划(“863”计划)基金资助项目(2011AA010705); 先导专项基金资助项目(XDA 06030200); 国家自然科学基金资助项目(61003167)
中文摘要:

提出一种新的朋友推荐方法,该方法同时使用用户兴趣和朋友关系这2种因素来为目标用户推荐朋友,对PageRank算法进行改进,提出一种能同时融合上述2种因素的Topic_Friend_PageRank(TFPR)模型。首先,采用LDA(latent Dirichlet allocation)分析用户发布的消息内容,将用户表示为若干主题上的分布,从而建模用户的兴趣。接下来,使用加权的PageRank算法建模用户在整个链接拓扑中的重要程度和用户之间朋友关系的相似性。最后根据主题感知的PageRank思想,将用户兴趣融入前面提到的加权PageRank中,形成同时融合用户兴趣和朋友关系的TFPR模型。采用新浪微博数据验证所提模型的性能,实验证明该模型能同时得到较高的准确率和召回率。

英文摘要:

A new hybrid approach by incorporatin gusers' interests and users' friendships together to recommend new friends for target users is proposed. A variation of Page Rank—Topic_Friend_Page Rank(TFPR) is proposed, which can consider user interests and user friends at same time. Firstly, proposed method uses latent Dirichlet allocation(LDA) to model users' interests, and weighted-Page Rank algorithm to model users' friendship network, and then merge these two factors into TFPR. This hybrid method models users' interests and users' friendships at the same time, and wedemonstrate the effectiveness of proposed hybrid model by using some social network datasets.

同期刊论文项目
期刊论文 9 会议论文 15
同项目期刊论文
期刊信息
  • 《通信学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:杨义先
  • 地址:北京市丰台区成寿寺4路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:
  • 电话:010-81055478 81055481
  • 国际标准刊号:ISSN:1000-436X
  • 国内统一刊号:ISSN:11-2102/TN
  • 邮发代号:2-676
  • 获奖情况:
  • 信息产业部通信科技期刊优秀期刊二等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25019