研究了白噪声参激一类三维中心流型上余维二分叉系统的矩Lyapunov指数。通过使用Arnold L摄动方法,Wedig W的线性随机变换法和Fourier级数展开方法,将系统的矩Lyapunov指数展开为小参数的幂级数,然后应用Fourier级数产生了矩Lyapunov指数展开式中第一项的特征值问题,并且在数值上验证了这些特征值序列是收敛的。
In this paper,we consider the moment Lyapunov exponent for a co-dimension two-bifurcation system excited by a white noise.Applying the method of parameter perturbation,an eigenvalue problem of the second expansion of moment Lyapunov exponent is obtained.The eigenvalue problem is solved by Fourier cosine series yielding an infinite matrix whose leading eigenvalue is the second expression of the expansion of moment Lyapunov exponent.Moreover,the convergence property of the eigenvalue sequence is numerically illustrated.