位置:成果数据库 > 期刊 > 期刊详情页
基于视觉方法的输电线断股检测与机器人行为规划
  • ISSN号:1002-0446
  • 期刊名称:《机器人》
  • 时间:0
  • 分类:TP242[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳110016, [2]中国科学院大学,北京100049
  • 相关基金:国家自然科学基金资助项目(61179049); 辽宁省自然科学基金资助项目(2013020054)
中文摘要:

输电线维护机器人用于代替人工完成危险作业,准确的故障检测与合理的行为规划对于作业效果至关重要.针对以上需求,采用视觉方法,提出了一种基于图像特征分类的输电线断股检测方法.该方法提取边缘梯度向量作为图像特征,采用支持向量机方法进行分类运算完成线路断股检测.在断股检测的基础上,利用断股检测信息与机器人传感器测得的信息构建机器人状态向量.根据当前状态向量,结合机器人断股补修作业流程,提出了面向捋线与压接复杂作业的机器人断股补修作业行为规划方法.利用实验室模拟线路开展实验,验证了提出的输电线断股检测及行为规划方法的有效性.

英文摘要:

Power line maintenance robots are used to replace workers due to the dangerous maintenance operation, and the robot maintenance effect is much related with accurate fault detection and rational behavior planning. With those requirements in mind, a visual method is presented to detect the broken strand fault based on the classification of an image feature. In the visual detection method, image edge gradient histogram is firstly extracted as the image feature, and broken strand detection can be accomplished by the classification of the image feature with support vector machine (SVM) method. On this basis, several robot state vectors are established by combining the broken strand detection result and the information of robot sensors. Based on the current state vector and robotic broken strand repair process, a behavior planning method for broken strand repair is proposed toward complex operations of broken strand return and clamps installation. Experiments are carried out in the laboratory, and results demonstrate the effectiveness of the proposed broken strand detection method and the behavior planning method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机器人》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王越超
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:jqr@sia.ac.cn
  • 电话:024-23970050
  • 国际标准刊号:ISSN:1002-0446
  • 国内统一刊号:ISSN:21-1137/TP
  • 邮发代号:
  • 获奖情况:
  • 中文核心期刊(2000年)
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11997