位置:成果数据库 > 期刊 > 期刊详情页
符号函数激励的WASD神经网络与XOR应用
  • ISSN号:0529-6579
  • 期刊名称:《中山大学学报:自然科学版》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中山大学信息科学与技术学院,广东广州510006, [2]中山大学软件学院,广东广州510006
  • 相关基金:基金项目:国家自然科学基金资助项目(61075121,60935001);教育部高等学校博士学科点专项科研基金博导类课题资助项目(20100171110045)
中文摘要:

基于权值与结构确定(WASD)算法,提出和构建了一种以非连续符号函数为隐层神经元激励函数的WASD神经网络模型。通过WASD算法,能有效地确定所构建网络的权值及网络的最优结构。该文也将此网络模型应用于XOR(异或)上,并详细讨论了在带噪类型不同时网络在此应用上的性能。计算机数值实验结果验证了所提出的权值与结构确定法能够有效地确定出网络的最优权值与结构,所构建的WASD网络在XOR应用上具有优秀的抗噪性能。另外,通过对比符号函数激励的WASD神经网络与幂函数激励的WASD神经网络在高维XOR应用方面的性能差异,证实了所提出的符号函数激励的WASD神经网络及算法在解决非线性问题时的优越性。

英文摘要:

A discontinuous signum-function-activated (SFA) weights-and-structure-determination (WASD) neuronet model is presented and constructed based on the WASD algorithm. By this algorithm, the optimal weights and structure can be determined effectively. We apply the SFA-WASD neuronet mod- el to XOR ( i. e. , exclusive or) , and detail its performance in the XOR application with various types of disturbance noise considered. Numerical verification results substantiate the validity of the WASD algo- rithm in determining the optimal weights and structure, as well as the good anti-noise ability of the SFA- WASD neuronet in the XOR application. Moreover, for high-dimension XOR application, the perform- ance comparison is made between the power-function-activated (PFA) WASD neuronet and the SFA- WASD neuronet. The numerical results verify the superiority of the SFA-WASD neuronet in terms of solving nonlinear problems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中山大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:中山大学
  • 主编:王建华
  • 地址:广州市新港西路135号
  • 邮编:510275
  • 邮箱:xuebaozr@mail.sysn.edu.cn
  • 电话:020-84111990
  • 国际标准刊号:ISSN:0529-6579
  • 国内统一刊号:ISSN:44-1241/N
  • 邮发代号:46-15
  • 获奖情况:
  • 全国优秀高等学校自然科学学报及教育部优秀科技期...,广东省优秀科学技术期刊一等奖,《中文核心期刊要目总览》综合性科技类核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),英国农业与生物科学研究中心文摘,德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:18509