位置:成果数据库 > 期刊 > 期刊详情页
大数据下基于异步累积更新的高效P-Rank计算方法
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:2014.6.9
  • 页码:2136-2148
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国人民大学信息学院计算机系,北京100872, [2]中国人民大学信息学院数据仓库与商务智能实验室,北京100872
  • 相关基金:国家自然科学基金(61272137,61033010,61202114);国家高技术研究发展计划(863)(2014AA015204);国家基础研究发展计划(973)(2012CB316205);国家社会科学基金(12&ZD220);中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)(10XN1018)
  • 相关项目:网络信息融合与知识服务的理论和方法研究
中文摘要:

P-Rank是SimRank的扩展形式,也是一种相似度度量方法,被用来计算网络中任意两个结点的相似性。不同于SimRank只考虑结点的入度信息,P-Rank还加入了结点的出度信息,从而更加客观准确地评价结点间的相似程度。随着大数据时代的到来,P-Rank需要处理的数据日益增大。使用MapReduce等分布式模型实现大规模P-Rank迭代计算的方法,本质上是一种同步迭代方法,不可避免地具有同步迭代方法的缺点:迭代时间(尤其是迭代过程中处理器等待的时间)长,计算速度慢,因此效率低下。为了解决这一问题,采用了一种迭代计算方法--异步累积更新算法。这个算法实现了异步计算,减少了计算过程处理器结点的等待时间,提高了计算速度,节省了时间开销。从异步的角度实现了P-Rank算法,将异步累积更新算法应用在了P-Rank上,并进行了对比实验。实验结果表明该算法有效地提高了计算收敛速度。

英文摘要:

P-Rank enriches the traditional similarity measure, SimRank. It is also a method to measure the similarity between two objects in graph model. Different from SimRank which only considers the in-link information, P-Rank also takes the out-link information into consideration. Consequently, P-Rank could effectively and comprehensively measure“how similar two nodes are”. P-Rank is applied widely in graph mining. With the arrival of big-data era, the data scale which P-Rank processes is increasing. The existing methods which implement P-Rank, such as the MapReduce model, are essentially synchronous iterative methods. These methods have some shortcomings in common: the iterative time, especially the waiting time of processors during iterative computing, is long, thus leading to very low efficiency. To solve this problem, this paper uses a new iterative method-the Asynchronous Accumulative Update method. Different from the traditional synchronous methods, this method successfully implementes asynchronous computations and as a result reduces the waiting time of processors during computing. This paper implements P-Rank using the asynchronous accumulative update method, and the experiment results indicate that this method can effectively improve the computation speed.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609