Bayesian网络是特征子集选择的有力工具,基于Bayesian网络特征子集选择就是建立类变量的Markov毯.文中在对变量之间基本依赖关系、结点之间基本结构、依赖分离标准和Markov毯进行分析的基础上,基于局部依赖分析方法进行类变量的Markov毯学习.在一些假设下可证明学习得到的特征子集是类变量的Markov毯.相对于现有的基于Bayesian网络特征子集选择方法,该方法更加灵活、高效和可靠.