以丹参为原料,利用超声波提取丹参多糖。在单因素试验的基础上,应用Box-Behnken试验设计软件对超声时间、超声功率、颗粒大小工艺条件进行分析与优化。同时,以1,1-二苯基-2-三硝基苯肼自由基清除能力、增强内皮细胞内超氧岐化酶的能力评价超声波法提取丹参多糖的抗氧化活性。结果表明:超声波提取丹参多糖的最优提取条件为超声功率212 W、超声时间18 min、颗粒大小55目,此条件下多糖提取率可达4.73%。抗氧化实验结果表明,丹参多糖有一定抗氧化活性。超声波浸提法相对单纯热水浸提法可以有效地缩短多糖提取时间,节约能源成本和时间,同时多糖活性更高。
The ultrasonic-assisted extraction of polysaccharides from the roots of Salvia miltiorrhiza with respect to three process parameters including ultrasonication time, ultrasonic power and raw material particle size was optimized using combination of single factor experiments and Box-Behnken design. Meanwhile the antioxidant activity in vitro of the extracted polysaccharides was evaluated by 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical scavenging ability. The ability to repair endothelial injury induced by high sugar content was analyzed by superoxide dismutase(SOD) activity in endothelial cells. The optimum extraction conditions that provided the maximum yield of polysaccharides of 4.73% were determined as follows: ultrasonic power, 212 W; extraction time, 18 min; and raw material particle size, 55 mesh. Antioxidant assays showed that the polysaccharides extracted from Salvia miltiorrhiza possessed antioxidant activity. Compared with hot water extraction, ultrasound-assisted extraction could effectively shorten the extraction time, save energy costs and yield polysaccharides with higher activity.