位置:成果数据库 > 期刊 > 期刊详情页
fMRI脑图的感知状态分析——回归模型及其寻优的非同质检验
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西北工业大学计算机学院,西安710072
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60273087,No.50474041 )
中文摘要:

脑功能核磁共振图像fMRI的特点是定位准确,但信噪比低、数据量大。对fMRI数据的泛回归模型的超参数寻优问题作了分析,提出基于非同质检验的超参数确认方法,重点比较了它在线性和非线性的回归方式(包括岭回归,支持向量回归,Elman递归神经网络)下针对不同外界环境特征的回归能力差异,实验所采用原始数据均来自PBAIC2006,结果表明,该方法在对相关领域知识较少依赖的前提下,具有较好的稳定性和泛化能力;同时在所涉及到的回归方法当中,线性方法的实现简单、有效,在计算代价上低于其他方法,对多种外界特征具有较高的预测能力。

英文摘要:

Functional MRI brain map is characterized by precise positioning,but low signal-to-noise ratio and large volume of data.We analyse the hyper-parameter optimization of general regression model on fMRI brain data,based on the non-homogeneity validation method.To acknowledge the discrepancy in ability of different regression approaches (including ridge regression,support vector regression and Elman Recurrent Neural Network) we compare them over every feature rating of external environment.The original data is obtained from PBAIC2006.The experiment results show that this method has good stability and generalization;also it can be used in the field which lacks of knowledge of the relevant fields.At the same time,we find the linear method is simple,effective in the fMRI regression mission,and has higher predictive ability but lower calculating costs than other methods under many feature rating of external environment.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887